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Optical solitons in birefringent fibers with parabolic law nonlinearity, with four-wave mixing, is addressed in this paper. Exact 
bright, dark and singular 1-soliton solution is obtained. There are several constraint conditions that naturally emerge from 
the structure of the soliton solution.  
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1. Introduction 
 

Optical solitons is one of the most fascinating areas 

of research in the field of nonlinear optics. Several 

results are reported in the past few decades [1-15]. In 

this area, the dynamics of solitons pulses propagating 

through optical fibers is investigated. This paper 

therefore investigates solitons that propagate through 

birefringent fibers. Birefringence is a common 

phenomenon that naturally occurs in optical fibers and it 

leads to the splitting of these solitons. Thus the solitons 

are polarized and thus it leads to differential group 

delay. The governing equation is the nonlinear 

Schrӧdinger's equation (NLSE). This paper studies 

NLSE with parabolic law nonlinearity, otherwise known 

as cubic-quintic law [6]. In addition to self-phase 

modulation (SPM) [1, 2] and cross-phase modulation 

(XPM) [1, 2, 3, 4], birefringence introduces the 

unwanted four-wave mixing (4WM) [9]. The case of 

birefringence in Kerr law, also known as cubic 

nonlinearity, in presence of 4WM is already reported 

during 2014 [9]. This paper will thus be an extension of 

earlier results from Kerr medium to parabolic law 

medium. As with Kerr law nonlinearity, ansatz approach 

will be implemented in this paper with parabolic law 

nonlinearity under phase-matching condition. For this 

integration scheme, constraint conditions will naturally 

emerge for these solitons to exist. After introducing the 

mathematical model in the following section, soliton 

solutions will be derived in subsequent subsections. 

 

 

 

 

2. Mathematical model 
 

Optical solitons in birefringent fibers with parabolic law 

nonlinearity is governed by the following coupled NLSE [1, 

2, 4, 5, 9]: 
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Equations (1) and (2) represent the model for 

propagation of optical solitons through birefringent fibers 

that maintains parabolic law nonlinearity. In (1) and (2), a is 

the coefficient of group velocity dispersion (GVD), while kl 

for l = 1, 2 are the coefficients of SPM and XPM terms 

respectively. The last two terms in (1) and (2) are accounted 

for 4WM. Here, 4WM is a nonlinear effect that stems out of 

third order nonlinearity. It occurs when at least two different 

frequency components co-propagate in some nonlinear 

medium. Also, x represents the spatial variable while t 

represents temporal variable. Finally, q(x, t) and r(x, t) are 

the complex-valued wave profiles for the polarized solitons 

[1, 2, 4, 5, 9].  

The search for exact bright, dark and singular 1-soliton 

solutions to this model will be studied in the rest of this 
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paper. In order to integrate (1) and (2) for soliton 

solutions, the following assumptions are made for the 

wave profile: 
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where ),( txPl  (l = 1, 2) are the amplitude components 

of the soliton solution while the phase component 

),( tx is given by 

 

 

  txtx ),(                     (5) 

 

Here, κ is the soliton frequency, while ω represents 

the wave number and θ is the phase constant. 

Substituting (3)-(5) into (1) and (2) and then 

decomposing into real and imaginary parts give 
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respectively, where l = 1, 2 and ll  3 . From the 

imaginary part equation it is possible to obtain the speed 

(v) of the soliton as 

 

 av 2                               (8) 

 

This follows after assuming that the wave profile for 

Pl is given by the form )( vtxg   where g is the wave 

profile with v being the speed of the wave. The real 

component given by (6) will be now further analysed for 

seeking bright, dark and singular solitons. The study will 

now be split into the following three subsections. 

 

 

3. Bright solitons 
 

In this case the assumption for Pl is taken to be 
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where 

 

)( vtxBτ                                (10) 

 

The amplitude of the soliton is given by Al and the 

inverse width is B. Finally, the speed of the soliton is v. 

Substituting (9) into (6) and simplifying leads to 
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Balancing principle implies 
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for l = 1, 2. Next, from the real part equation (11) setting the 

coefficients of linearly independent functions to zero, leads 

to 
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Thus the relations (14) and (15) prompt the constraint 
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Hence bright 1-soliton solutions to (1) and (2) are 
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where the definition of the parameters are in place. 

 

 

3.1 Dark solitons  
 

For dark solitons, the starting hypothesis will be 
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with the same definition of τ as in bright solitons. 

Substituting this hypothesis into (6) and simplifying, 

leads to 
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Next, balancing principle yields pl as given by (12). 

Subsequently, setting the coefficients of the linearly 

independent function to zero gives 
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with the constraint 
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that stems out from (20). Thus, dark 1-soliton solution to 

birefringent fibers with FWM is given by  

   

)(

2

1 tanh1
64

3
),(),(   txie

k

k
txrtxq  (24) 

 

with the respective parameters and constraints as 

defined. 

 

 

3.2 Singular solitons 

 

For singular solitons, the starting hypothesis is 
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where once again, the definition of τ stays the same as given 

by (10). In this case too, the parameters A and B are free 

parameters. Substitution of (25) into (6) yields 0


  (13) 
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Balancing principle gives (12). Again, from the real 

part equation (26) setting the coefficients of linearly 

independent functions to zero leads to the wave number 

given by (13) and 
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Therefore, the relations (27) and (28) imply 
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Hence singular 1-soliton solutions to (1) and (2) are 
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where the parameters are defined and the constraints are all 

in place. 

 

 

4. Conclusions 
 

 This paper obtained 1-soliton solution to birefringent 

fibers with parabolic law nonlinearity, in presence of 4WM 

terms. Bright, dark and singular soliton solutions were 

retrieved in this case. The constraint conditions were also 
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listed. These integrability criteria must be fulfilled with 

the soliton parameters for these solitons to exist. The 

results of this paper give a lot of hope for future. Later, 

in addition to 4WM terms, there are several perturbation 

terms that will be taken into account, such as self-

steepening, nonlinear dispersion, inter-modal dispersion, 

higher order dispersion and several others [1]. These will 

lead to soliton solutions where the parameters will be 

furthermore involved. The results of those findings will 

be published later.  
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